Network Biology Approach to Complex Diseases

LECTURE 4.
Disease Heterogeneity

Teresa Przytycka
NIH / NLM / NCBI

Challenges in Modeling of disease heterogeneity

- Capturing important similarities without loosing important differences
 - Examples classification based on on treatment response helps optimizing treatment options (applicable also in the absence of understanding of molecular mechanism)
- Understanding molecular underpinnings of the differences
 - Subtype specific drug design
 - Need to zoom on putative causes of differences/similarities

Modeling Disease Heterogeneity

- Supervised classification discrete labels are provided by assigning a phenotype (e.g. metastatic/non-metastatic) and gene expression or other molecular measurements are taken as classifying features
 - Machine learning approaches such as random forest, SVM, etc. can be applied and will not be discussed
 - Network based classification (Chuang MSB 2007 and other)
- Non supervised classification
 - clustering using particular feature (e.g. gene expression)
 - Integrative/multi-feature clustering (example iCluster Shen et. al. PloS One 2012)
- Network based mixture models
 - Cho and Przytycka RECOMB 2012 / NAR 2013

Revisiting Chuang et al. Network based classification of breast cancer metastasis

- For each gene compute activity score :
 - Normalize gene expression
 - Compute activity scores a _{kj} by averaging over genes in the subnetwork; discretize this value
- Score candidate subnetwork M_k
 using mutual information between
 value of a and phenptype

 $S(M_k) = \sum_{x \text{ value of a }} \sum_{\text{phen y}} p(x,y) log[p(x,y)/p(x)p(y)]$

 Search for most discriminative subnetworks (greedy search)

Comments on extensions/ modifications

- For separating into two subclasses any method that identifies dys-regulated pathways can be used using by taking of the subtypes in place of "normal":
 - jActive, DEGAS, module cover (already discussed)
 - Chowdhury S.A., Koyutürk M. Identification of coordinately dysregulated subnetworks in complex phenotypes. Pacific Symposium on Biocomputing 2010:133-144.
- Finding discriminative subnetworks optimally Dao et al, Bioinformatics (ISMB 2011)
 - Use color coding paradigm to find optimal subnetwokrs efficiently

Non-Supervised classification

- hierarchical clustering
- positive matrix factorization
- other clustering techniques
- Integrative Clustering (iCluster)
 Integrative Subtype Discovery in Glioblastoma Using iCluster
 Shen et.at. PloSONE 2012

Module Cover TCGA Ovarian Cancer

Example – expression based clustering

An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1 Roel G.W. Verhaak, et al. Cancer Cell 2011

Step 2: Identify important signatures

Classification into subtypes is a reasonable but not perfect approach for several reasons:

Expectation of clearly defined subgroups might not be realistic

Difficulty in capturing underlying genotype-phenotype relation

Key features of our approach

Generative Topic Model

- 1. Our model is a <u>meta-model</u> that summarizes the results of 1,000 different models.
- 2. In each model we assume
 - 1. k subtypes
 - 2. each patient is a mixture of these subtypes
 - 3. each subtype is defined by distribution of features
 - patients with similar phenotypes have similar explanatory features

Phenotypic and explanatory features

Phenotypic features:

Explanatory features

Survival time
Response to drugs,.....
Gene expression profile

- mutations, CNV, micro RNA level;
- Epigenetic factors,
- Sex, environment

Patient graph

Nodes – patients

Edges – phenotypic similarities

Key idea

neighbors in patient network should have similar explanatory features

Topic model: Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl Stat 2010, 4(1):124-150.

Case study of GBM (Glioblastoma Multiforme)

Varhaak et al. Classification

Mesenchymal

NF1 mutation

Classical

- Proneural

 IDH1 mutation

 PDGFRA ampl.
- Neural

patient network for GMB

Key features of our approach

Generative Topic Model

- 1. Our model is a <u>meta-model</u> that summarizes the results of 1,000 different models.
- 2. In each model we assume

- 1. k subtypes and
- 2. each patient is a mixture of subtypes
- 3. Each subtype is defined by distribution of features
- 4. Patients with similar phenotypes have similar explanatory features

Step 2. 1 Assuming k subtypes, generate feature distribution for k subtypes

Subtype I

EGFR_A 0.45 NF1_M 0.37 PTEN_M 0.21 TP53_M 0.11

Subtype II

PDGFRA_A 0.51 IDH1_M 0.29 TP53_M 0.17 miR-9_H 0.11

Subtype III

miR218_H 0.35 CDK2_D 0.22 SHC1_M 0.14

Subtype IV

EGFR_A 0.47 CDKN2B_D 0.36 EGFR_M 0.19 miR195_H 0.05

- All features discretized
- one random variable per each gene and per each type of a genetic variation observed in this gene (amplification and deletion having two different variables, all mutations treated with one variable).
- For microRNA under expression as two different types of alterations where variable indicates if the expression is more than 1 or 2 standard deviations from the mean microRNA expression
- ith aberration in pth patient corresponds to a discrete random variable g_{p,i}

Step 2. 1 Assuming k subtypes, generate feature distribution for k subtypes

Subtype I EGFR_A 0.45 NF1_M 0.37 PTEN_M 0.21 TP53_M 0.11 ...


```
Subtype III

miR218_H 0.35
CDK2_D 0.22
SHC1_M 0.14
...
```

```
Subtype IV

EGFR_A 0.47
CDKN2B_D 0.36
EGFR_M 0.19
miR195_H 0.05
...
```

Each disease subtype β_k is defined as a distribution over the genomic aberrations.

Step 2.2 .Based on patient's features represent each patient as mixture of the subtypes

First, for each patient p, draw subtype proportions θ p from the K-dimensional Dirichlet distribution

Step 2.3 Generate edges based on similarity of subtype mixtures

Patient network is described by P^2 binary random variables $I_{p,p'}$ where $I_{p,p'}$ is set to 1 if there is a link between patients p and p'.

Optimize parameters to maximize likelihood of the patient -patient network

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl Stat 2010, 4(1):124-150.

The observed patient network is assumed to be generated by the following hierarchical sampling process.

- First, for each patient p, draw subtype proportions θ p from the K-dimensional Dirichlet distribution.
- For each genomic factor $g_{p,i}$, draw the latent subtype assignment $z_{p,i}$ from the multinomial distribution defined by θ_p and randomly choose a genomic factor from the corresponding multinomial distribution.
- for each pair of patient (p, p') draw the binary link variable l_{p,p'} from the distribution defined by the link probability function ψ. This function is dependent on the inner product of two vectors of subtype assignments z_p and z_p' that generated their genomic aberrations.

CDKN2B_D PTEN I EGFR A CDKN2B COL1A1 N CDKN2B FRAP1 CDK4 PTEN I PDGFA mir-128b H BRAF A BRAF CDKN2D mir-128a B CDK6 A AGAP2 P HIPK2 A EGFR mir-27a 1 PRKCQ D mir-222 HGF MET A BRAF mir-21 RHEB_A mir-23a I mir-9* I NF1 mir-338 mir-181a H SHC2 PDGFA mir-9 I mir-630 F mir-23a SPRY2 EP400 AGAP2 MET

EGFR

mir-34b_1 PRKCQ I

mir-17-5p H

Visualization of a sample individual model

MADD

MSI1

AKT2

IDH1_ mir-22_ BRCA2_ CDKN2A

BRCA2

Summarizing the results of 1,000 models with respect to three aspects:

- Relation between patients
- Relation between features
- Relation between features and patients

Patient-patient relationship

Observation: No separate Neural group (setting larger k did not change it)

Feature-feature and patient-feature relationships

Probabilistic subtype assignment

Selected cancer related features

Challenges in Modeling of disease heterogeneity

- Subtyping methods allow for capturing important similarities without loosing important differences
- Mixture models capturing overlapping subtypes
- A preferred approach should link causes to effects i.e. capture genotype-phenotype relation - topic model